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We parameterized neural net-based models for the Detroit and Twin Cities

metropolitan areas in the US and attempted to test whether they were

transferable across both metropolitan areas. Three different types of models

were developed. First, we trained and tested the neural nets within each region

and compared them against observed change. Second, we used the training

weights from one area and applied them to the other. Third, we selected a small

subset (,1%) of the Twin Cities area where a lot of urban change occurred. Four

model performance metrics are reported: (1) Kappa; (2) the scale which correct

and paired omission/commission errors exceed 50%; (3) landscape pattern

metrics; and (4) percentage of cells in agreement between model simulations. We

found that the neural net model in most cases performed well on pattern but not

location using Kappa. The model performed well only in one case where the

neural net weights from one area were used to simulate the other. We suggest that

landscape metrics are good to judge model performance of land use change

models but that Kappa might not be reliable for situations where a small

percentage of urban areas change.
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1. Introduction

We have developed a Geographical Information System (GIS) and artificial neural

network (hereafter as neural net) based Land Transformation Model (Pijanowski

et al. 2002a, b) that simulates land use change. Within the Land Transformation

Model (LTM), a GIS is used to process spatial data that is then presented to a

neural net. The neural net finds a numerical solution between the input (i.e. drivers

of change) and output (e.g. locations of change occurring between two time periods)

using non-linear functions and weights that are applied to units within the network.

Neural nets are normally regarded as very powerful tools that can generalize well

across datasets (i.e. it can perform well on data that it has not seen before); that it

can process large amount of data, so large regions can be simulated at fairly high

resolutions; and that they are not overly sensitive to errors in data (Skapura 1996).
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Previous researchers (see Geist and Lambin 2002 for review) have found that

developing land use change models that can generalize across regions is difficult.
This is because the drivers of land use change are oftentimes complex interacting

over different spatial and temporal scales (Lambin et al. 2003). Temporally, drivers

of land use change (Lambin et al. 2003) can operate in a progressive and gradual

manner (e.g. long term climate changes) or they can be episodic (e.g. floods, war).

Causes can also be proximate (i.e. local), or they can originate exogenously (i.e.

underlying causes). Quantifying all potential causes of land use change, be they

demographic, technological, societal, economic, biophysical or policy, in a model is

difficult given the lack of understanding of all of these factors, the generality of the
drivers across regions and the lack of sufficient information to parameterize a model

with these drivers of change (Ojima et al. 1994).

Neural nets have been found to be excellent tools that can generate generalizable
models in other disciplines (e.g. Reed and Marks 1999, Skapura 1999). One

approach to ensure that neural nets can produce a generalizable model is to employ

a ‘stop early’ approach; in other words, allow the neural net to train for only few a

cycles. A recognized problem of stopping early is that the neural net could become

‘trapped’ in a local minima solution (Reed and Marks 1999) that will eventually

produce poor results. Conversely, a neural net model that is trained for an excessive

number of cycles could result in over fitting of data making it poorly transferable

between applications.

The purpose of this paper is to: (1) provide a brief summary of neural net terms

and concepts; (2) illustrate how we parameterize the LTM using a set of spatial

interaction rules that are derived from GIS routines; (3) test the ability of neural nets

to generalize across two large metropolitans areas in the Upper Midwest of the
United States and (4) quantify how well neural nets performs across a test of

generalization. We also present the results of four different methods to quantify

model performance for our neural network models. We conclude with a discussion

on how well the models perform and what the potential might be for neural nets for

spatial modeling.

2. Background

2.1 Artificial neural networks

Neural nets are software tools designed to emulate the functionality of mammalian

brains. Neural nets are hierarchically arranged layers of interconnected units that

process information in a high parallel processing fashion. Each unit, called a node

(analogous to a neuron), is connected to other units in network by a weighted

connection so that each unit receives input from many nodes in the previous layer.
The most common neural net is a multi-layer perceptron (MLP) which contains

three types of layers: input, hidden, and output. Neural net algorithms calculate

weights for input values, input layer nodes, hidden layer nodes and output layer

nodes by introducing the input in a feed forward manner throughout the network

layers. The output of every node is then computed as the function of its input; this

function is referred to as the activation function and it can take on many different

forms. A coefficient can be introduced to the activation function; this is called a bias.

Weights in a neural net are determined by using a training algorithm, the most
popular of which is the back propagation (BP) algorithm. The BP algorithm

randomly selects the initial weights, then compares the calculated output for a given
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observation with the expected output for that observation. The difference between
the expected and calculated output values across all observations is summarized

using the mean squared error. After all observations are presented to the network,

the weights are modified according to a generalized delta rule (Rumelhart et al.

1986), so that the total error is distributed among the various nodes in the network.

This process of feeding forward signals and back-propagating the errors is repeated

iteratively with each iteration called a cycle.

Presenting data to the neural net with input and output data over many cycles is

called training. Users can then stop the training session and have the neural net
software save all of the weights and biases to a network file. A network file is then

applied to another dataset containing only input data and no output data. This

process, called testing, allows the neural net to estimate output values.

2.2 GIS based procedures for the land transformation model

The LTM is similar to other reduced form statistical models (e.g. Pontius 2001,

Veldkamp and Lambin 2001, Walker 2003) that are grid based. Like these other

models, a GIS is used calculate a variety of spatial relationships (which we call
spatial transition rules) between drivers of change (e.g. road, slope, soil type) and

cells that could undergo change. However, we recognize several broad classes of

spatial transition rules (see Pijanowski et al. 2000 for details): (1) neighborhoods or

densities; (2) patch size; (3) site specific characteristics; and (4) distance from the

location of a driver cell. Neighborhood effects are based on the premise that the

composition of surrounding cells within a certain area has an effect on the tendency

of a central cell to transition to another use. Patch sizes is the size of area containing

the same values (e.g. a forest patch). Site-specific characteristics are values, like
slope, specific to each location. The distance spatial transition rule relates the effect

of distance between each cell and the closest driver cell.

Grids that were created from the spatial transition rules are referred to as driving

variable grids. We exclude areas that cannot undergo change; all of these cells are

contained in a single GIS layer which we call the exclusionary zone.

3. Methods and materials

3.1 Study sites

Data for the Minneapolis-St. Paul Metropolitan area were obtained from the

University of Minnesota Remote Sensing Laboratory, the Twin Cities Metropolitan

Council, the Minnesota data, Vol. 1 produced by the Land Management

Information Center and from the Minnesota Department of Natural Resources
Data Deli web site (http://deli.dnr.state.mn.us). Data on land use, transportation,

natural features (e.g. locations of rivers, lakes, etc.), public lands, digital elevation

and political boundaries were incorporated into the Arc/Info 8.X Geographic

Information System (ESRI 1999). GIS data were converted from their original

projection into an Albers Equal Area projection (Datum NAD 83) with units in

meters.

The 1991 and 1997 Generalized Land Use data set encompass the seven county

Twin Cities Metropolitan Area (TCMA) in Minnesota. The land use dataset was
developed by the Twin Cities Metropolitan Council, a regional governmental

organization that deals, in part, with regional issues and long range planning for the
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Minneapolis-St. Paul area. The dataset (see Sawaya et al. 2001 for a

detailed description) includes the following land use classifications: single family

residential, multi-family residential, commercial, industrial, public and semi-public,

airports, parks and recreation, vacant and agricultural, major four lane highways,

open water bodies, farmsteads, extractive, public industrial, industrial parks

not developed, and public and semi-public not developed. Land use was

interpreted from 1:24 000 aerial photography scanned with 0.6 m resolution pixels.

Most lines were digitized at an on-screen scale of no higher than 1:3000. In

highly urbanized areas, 1:1500 was more common. The Metropolitan Council

attempted to meet the National Mapping Accuracy Standards at 1:24 000 (within

approximately 40 feet of actual location) although no testing has been conducted

to verify this. For the purposes of the modeling exercises, all TCMA data

were converted to an Arc/INFO GRID (ESRI 2000) format with cell sizes

of 30m630m.

Detroit Metropolitan Area (DMA) data were obtained from several

sources. Land use and transportation data from 1980 were acquired from

Michigan State University’s Center for Remote Sensing and Geographic

Information Science. Land use interpretation was made from 1:24 000 colour-

infrared and black-and-white aerial photographs by the Michigan Department of

Natural Resources. These data depict approximately 52 categories of urban,

agricultural, forest, wetland, and other land cover types for the entire state of

Michigan. Each land use/cover category is depicted by a polygon and identified with

a land cover code. The minimum digitized polygon size was 5 acres. Updated land

use and transportation data were obtained from the South East Michigan Council

of Government’s (SEMCOG) GIS facility. Land use and another GIS data used for

the modeling exercise was converted to an Arc/INFO GRID (ESRI 2000) format,

with 30m630m cell sizes.

All land use classes for both metropolitan areas were also reclassified from their

original classification to Anderson Level I (Anderson et al. 1976) for the modeling

exercises. The resulting land use/cover classes were: urban, agriculture, open

grassland, forest, open water, wetlands and barren.

Figure 1 shows the areas in the Minneapolis-St. Paul (i.e. Twin Cities)

Metropolitan Area and the Detroit Metropolitan Area in relationship to the

Upper Midwest of the United States. Figure 2 shows land use patterns for both areas

in 1978 and 1991 for DMA and TCMA respectively. Both areas are composed of 7

counties. For the TCMA study area, a total of 11.8 million cells were included in the

modeling exercise. The DMA area, on the other hand, is nearly 55% larger,

contained 33.3 million cells. The study interval was 7 and 15 years, for the TCMA

and DMA areas, respectively.

3.2 LTM GIS parameterization

To insure the input files for the neural nets were identical for each of the two

metropolitan areas, the same spatial features (e.g. highways) and spatial transition

rules (e.g. distance to nearest county road) were applied to each area. The driving

variable grids developed for our models summarized below:

3.2.1 Transportation. The absolute distance each cell in the entire location from

the nearest a) highway and b) county road or residential streets, was stored in
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separate Arc/INFO GRID files. These two driving variable grids represented the

potential accessibility of a location for new development. A third transportation

grid, distance from downtown, was used to reflect the distance between housing

and the greatest concentration of employment opportunities for the metropolitan

area.

3.2.2 Landscape features. The distance from lakes and rivers was calculated

and also stored as separate driving variable grids in the GIS. Pijanowski et al.

(2002a) has found that landscape topography is an influential factor contributing

toward residential use. Thus, a ‘rolling hills’ driving variable grid was created
from a 30 m Digital Elevation Model (DEM). The amount of topographic

variation surrounding each cell was estimated by calculating the standard

deviation of all cell elevations within a 5 km square area. Cells containing

larger values reflect landscapes that contain a greater amount of topographic relief

around them.

3.2.3 Urban services. The distance each cell was from the nearest urban cell during

the start the model (TCMA51991, DMA51980) was calculated and stored as

separate driving variable grids. It is assumed that the costs of connecting to current

urban services (e.g. sewers) decrease with distance from urban.

3.2.4 Exclusionary zones. In the TCMA, the following areas were held back as

being areas of non-development: local parks, existing urban areas, water, and public

lands (including national wildlife refuges, national forests, state forests, and state
parks). In the DMA, the following areas were considered areas of non-development:

existing urban areas, water, and designated public lands.

Figure 1. Location of the two metropolitan areas, the Twin Cities Metropolitan Area
(TCMA) and the Detroit Metropolitan Area (DMA). State (in black) and county (grey)
boundaries are shown.
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Figure 2. Land use maps of the two study areas.
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3.3 Neural network parameterization

Driving variable grids stored in the GIS were written to ASCII grid files and then

converted to a tabular format such that each location contained its spatial

configuration value (i.e. each location was an input vector into the neural net) from

each driving variable grid. This reformatting to a tabular arrangement was necessary

for input to the neural net software (see below for more details). The neural network

model was based on Pijanowski et al. (2002a). Briefly, each value in an entire driving

variable grid was normalized from 0.0 to 1.0 by dividing each value by the maximum

value contained in driving variable grid. Cells located within the exclusionary zone

were removed.

The Stuttgart Neural Network Simulator (SNNS) was utilized for training and

testing. To reduce the possibility that the neural net would overtrain, every other cell

was presented to the neural net. The SNNS batchman utility was used to create, train

and test the neural net. A back propagation, feedforward neural net, with one input

layer, one hidden layer and one output layer was utilized. The neural network input

layer contained seven nodes (one node for each driving variable) and seven nodes in

the hidden layer. The output layer contained binary data that represented whether a

cell location changed to urban (15change; 05no change) during the study period

(1980 to 1995 for DMA and 1991 to 1997 for TCMA).

We allowed the neural net to train on the input and output data for 1000 cycles

and saved the network file at 100 cycle intervals. To reduce the possibility that the

network would bias its learning based on the order of data presented to it, the shuffle

option in SNNS was used to randomly present data during each training cycle.

The testing exercise that followed used driving variable grids from all cells

(except those located in the exclusionary zone) in the study locations but with

the output values removed. The network file generated from the training exercise

was used to estimate output values for each location. The output was estimated as

values from 0.0 (not likely to change) to 1.0 (likely to change); the output file

created from this testing exercise is called a result file. Values from the result file

were multiplied by 100 to produce values ranging from 0 to 100; we call these

suitability values. We then used a maximum likelihood rule (see Pijanowski et al.

2002a for details) such that cells with the greatest values were assumed to transition

first. The number of cells selected to transition equaled the number of cells

transitioning between the two years being modeled. A routine was written into the C

programs that performed this calculation such that if cells possessed the same value

but only a subset of them needed to be selected to transition, then the necessary

number of cells of equal value was randomly selected from the pool of available

cells. It should be noted that in logistic models it is common to threshold those cells

whose value is 0.5 or greater (see Pontius 2002). However, output values from a

neural net can not be directly interpreted as probabilities (Reed and Marks 1999),

especially when output data are highly unbalanced as is the case with both of our

study areas; in many instances the greatest value from a neural net simulation was

less than 0.5.

To test how well the neural net model could be applied to other areas, we

performed a swap of network files between the two metropolitan areas. For

example, one type of swap involved training the neural net on DMA data and

applying (i.e. testing) the network file to TCMA data to derive output. We ran the

models for 1000 cycles saving model simulation results for every 100 cycles.

A neural net-based land-use change model 203



In order to determine how well neural nets perform for an extremely large number

of cycles, we selected a subset of the TCMA that was 1% of the metropolitan area

(containing 10810 cells). This area also had 50% of the area transition to urban. We

used the identical inputs that were subset using the GIS but ran the simulation out

for 1 000 000 cycles. The network files were saved every 1000 cycles (although we

report results on a 100 cycle run as well). We repeated the accuracy assessment

analysis for this subset and report the results of selected simulations for comparison

purposes.

3.4 LTM accuracy assessment

We used a variety of methods to assess model performance. First, cells that were

predicted to transition to urban (according to the model output) were compared

with the cells that actually did transition during the time period of study. The

percentage of cells falling into this category was then divided by the actual number

of cells transitioning to obtain a percent correct match (PCM) metric, calculated as

follows:

# cells correctly predicted to change|100:0

# cells actually transitioning
ð1Þ

Following our earlier approach (Pijanowski et al. 2002a), we passed a scaleable

window through what we call the error grid containing locations of correctly

predicted cells and omission and commission errors. We increased the numerator in

equation (1) by one for each omission and commission error pairs falling in this

window (we did not count any error cell more than once). We first passed a 363

window through the entire error grid starting with the upper left corner. The final

adjusted PCM was then saved to a file. We next increased the window by two and

repeated the process. Windows sizes between 363 and 99699 were used to calculate

adjusted PCMs for swap and non-swap simulations. This approach allows us to

estimate the accuracy across different scales (i.e. different window sizes). We report

here the window size where the PCM exceeds 0.5 (i.e. the window size where the

number of correctly predicted cells exceeds the number not correctly predicted after

pairs of omission and commission errors are counted in the window). An example of

output from our scaleable window with the PCM threshold value of 50% is

illustrated in figure 3.

Our second approach to assess model performance was to determine how well the

model output matched the real change maps. We calculated a Kappa statistic (Sousa

et al. 2002) for each model run. Kappa calculates the percentage success of a model

relative to chance (table 1).

We used the following form of the Kappa equation:

K~
P Að Þ{P Eð Þ

1{P Eð Þ ~

Pc

i~1

pii{
Pc

i~1

piT
:pTi

1{
Pc

i~1

piT
:pTi

ð2Þ

where,

i51, …, c: the common categories of change in both observed change and

simulated model run results. There are two categories (i.e. c52)
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categories whose values are predefined ‘0’ (no urban change) and ‘1’

(urban change).

pij: the proportion of cells in category i of observed change in category j of

simulated model run, from the contingency or confusion matrix.

piT: the proportion of cells in category i of observed change, taken from the

marginal totals of the last column of the contingency matrix.

pTi: the proportion of cells in category i of simulated model run, taken from the

marginal totals of the last row of the contingency matrix.

pii: the proportion of cells in the same category, i, on both observed changes and

simulated model runs, taken from the diagonal elements of the contingency
matrix.

P Að Þ~
Pc

i~1

pii: the fraction of agreement, or sensitivity coefficient.

P Eð Þ~
Pc

i~1

piT
:pTi: the expected fraction of agreement subject to the observed

distribution.

It is generally considered (Sousa et al. 2002) that Kappa values for map agreement

are: .0.8 is excellent; 0.6–0.8 is very good; 0.4–0.6 is good; 0.2–0.4 is poor; ,0.2

very poor.

We were also interested in how well the models predicted patterns of urban

change compared to patterns of real urban change (hereafter referred to as

real change) that occurred in the two metropolitan areas. We used the landscape

metric program FRAGSTATS 3.3 (McGarigal et al. 2002) to calculate eight

different landscape pattern metrics (see table 2) on grids with cell values of

1 for model predicted change and real change. We chose three patch metrics

(number of patches, mean patch area and standard deviation of patch areas), one

shape metric (mean patch fractal dimension), one aggregation metric (landscape

shape index) and one connectivity metric (patch cohesion index). All landscape

Figure 3. The scaleable window analysis plot illustrating the window size that produces a
PCM of 50%.
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Table 1. Summary of the landscape pattern metrics from FRAGSTATS used for model performance assessment.

Name Equation Description & Arguments

Number of Patches (NP) NP5ni ni5number of patches in urban change class. Range: NP>1. When NP51, the
landscape contains only one patch of the urban change. Measures the extent of
subdivision or fragmentation of the urban change patch. Since across the model
runs the total landscape area and the number of cells that are transitioned in each
run are held constant, the number of patches conveys information about the
patch density and mean size. The metric produces the number of patches of the
corresponding patch type (urban change).

Mean Patch Area
(AREA_MN)

Amean~

Pn

j~1

aij
1

10,000ð Þ
ni

ni5number of patches in urban change class, aij5area of patch ij in square meters,
divided by 10,000 to be converted in hectares. The final metric display is
expressed as a percentage change in mean patch area from the real urban change
mean patch area observed. Measures the mean area of each urban patch
comprising the model landscape mosaic for each run.

Patch Area Standard
Deviation (AREA_SD)

ASD~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Pn

j~1

aij
1

10,000ð Þ{

Pn

j~1

aij
1

10,000ð Þ
ni

0

@

1

A

0

@

1

A

2

ni

v
u
u
u
u
t

Similar to the Mean Patch Area metric, this quantifies the root square error, that
is the deviation from the mean, of patch area in the corresponding urban change
grid

Landscape Shape Index
(LSI)

LSI~ ei

min ei

ei5total length of edge of class i (urban change) in terms of number of cell
surfaces; minei5minimum total length of edge of class i (urban change) for a
maximally aggregated urban achieved if all urban was aggregate into one square
patch. Range: LSI>1. LSI51 when the landscape consists of a single square.

Mean Fractal Dimension
Index (FRAC_MN)

FRACmean~

Pn

j~1

2 ln 0:25pijð Þ
ln aij

ni

pij5the perimeter (in m), and aij5the area (in m2) of urban patch ij.
Range: 1(FRACmean(2, indicating the extend of departure from Euclidian

geometry or increase in shape complexity. This metric measures the complexity of
shapes across a range of spatial scales defined by the urban patch sizes. For very
simple urban patch types (e.g., squares), the metric approaches 1, while for more
complex type of urban patches, the metric approaches 2.

Patch Cohesion Index
(COHESION)

COHESION~ 1{

Pn

j~1

pij

Pn

j~1

pij
ffiffiffiffi
aij
p

0

B
@

1

C
A 1{ 1ffiffiffi

A
p

� �{1

100ð Þ
pij5perimeter of patch ij in terms of number of cell surfaces.

aij5area of patch ij in terms of number of cells.
A5total number of cells in the landscape.
Range: 0(COHESION(1. COHESION50 when the proportion of landscape
comprised of the urban class decreases and becomes increasingly subdivided and
less physically connected. Measures the physical connectedness of the corresponding
patch type.

2
0

6
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metrics were compared to the real change metrics as a percent difference from real

change:

LMrc{LMm

LMrc

� 100 ð3Þ

Where LM is one of the above six landscape metrics, m represents the LM for a

model simulation and rc is the LM for real change grid.

4. Results

4.1 Summary of land use changes

Within the TCMA, urban use was 21% of the entire study area in 1991 and 23% in

1997, which represents a total of 249 071 cells transitioning to an urban land use in

the TCMA during the 6-year period. On the other hand, urban use in 1980

comprised 26% of the entire area in the DMA. In 1995, urban was 33% of the DMA

study area with 744 078 cells transitioning to urban in the DMA during the 15 year

time period. Thus, for TCMA, about 4.87% of the area converted to urban between

1991 and 1997 and 6.88% converted to urban in DMA from 1980 to 1995.

4.2 Scaleable window

Figure 4 shows the results of the scaleable window analysis of the TCMA and DMA

simulations including the swaps for simulation cycles 100 to 1000 with 100 cycle

Figure 4. Window sizes for scaleable window analysis that gives a PCM of 50%. Simulations
for TCMA and DMA non-swap are shown for 100-1000 cycles at 100 intervals. The swaps
(denoted with an s) are shown for the same intervals as the non-swap simulations.

Table 2. Confusion matrix for model performance showing row and column units important
for the Kappa coefficient calculation.

Observed
Change

Simulated Model Runs

0 1 Total

0 p11 p12 p1T

1 p21 p22 p2T

Total pT1 pT2 1
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increments. Note that for the non-swap simulations, both TCMA and DMA

produce a PCM greater than 50% at window sizes between 17 and 39. This

represents windows of that are 0.510 km to 1.17 km across. The swaps, on the other

hand, have window sizes as large as 333 cells wide, representing a window size of

9.99 km. Only the TCMA swap of 1000 cycles performed as well as the training and

testing on itself. In other words, the best swap was when the network file from the

DMA training of 1000 cycles was applied to the TCMA input data. It is also

interesting to note that the window size of 50% PCM for TCMA swaps start small,

around 67 for 100 cycles, steadily rises peaking at 400 cycles and then falls again to

its lowest level at 1000 cycles which had a window size of 31 (0.930 km) where PCM

reached 50%. The DMA swap simulations produced more even results for window

sizes for 50% PCM fluctuating between 50 (1.5 km) and 97 (2.9 km).

4.3 Percentage map agreement

We took the output of predicted change and calculated the percentage of cells that

were similar between model simulations. Figure 5 shows the results of pairwise

comparisons of model output and the percentage of cells that were similar for three

different cycle (A5100, B5500 and C51000) simulations. For TCMA, nearly all of

the pairwise comparisons showed that there was at least an 80% agreement in the

locations of cells that were predicted to change. Nearly 78% of the cells were the

same in all three runs (i.e. A+B+C). There was much less consistency between model

results for the DMA area with pairwise runs producing 55 to 73% percent

agreement. Only 51% of cells were the same for all three model runs for DMA.

4.4 Kappa statistic

Kappa coefficients for all simulations are shown in figure 6. The range for Kappa is

0.12 to 0.30. Nearly all of the non-swap TCMA runs produced the same Kappa

(,0.29); the DMA simulations produced more variable Kappas across these

simulations. Kappas for TCMA exceed those for DMA. The Kappas for all swap

Figure 5. The percent agreement between pairs of model simulations and all three
simulations for 100 (A), 500 (B) and 1000 (C) cycle runs.
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simulations were lower than non-swap with the TCMA swap (i.e. DMA trained

network file applied to TCMA input) yielding the smallest Kappas.

4.5 Landscape metrics

Figure 6 summaries the landscape metric analysis performed on 100, 500 and 1000

cycle simulations for non-swap and swap simulations. The number of patches (NP)

did not differ greatly from the DMA real change grid for all non-swap simulations.

The non-swap TCMA simulations did produce more patches for 100 and 1000 cycle

simulations; as many as 47% more than the number of patches in the real change

grid for TCMA. In addition, the swap simulations produced more patches in both

areas compared to the number of patches in the real change.

The mean area (AREA_MN) of patches in non-swap DMA simulations did not

differ greatly (,10%) from the mean patch area in the real change. However, the

mean patch area for the TCMA non-swap simulations was greatly smaller with

patch areas of predicted urban being less than half of the mean patch area for the

real change grid in TCMA. For the swap simulations, both areas produced mean

patch areas that were much smaller than the real change for the simulated area.

The standard deviation of the patches (AREA_SD) of predicted urban for DMA

and TCMA were less than the metric for real change in all swap and non-swap

simulations. This suggests that the model is producing less variable patches of urban

than what occurs in both study area’s real change grid.

The landscape shape index (LSI) measures the total length (in cell units) of edge of

urban. Thus, LSI measures the amount of urban aggregation or clumpedness. The

LSIs for the swap and non-swap simulations varied greatly. The DMA non-swap

simulations produced LSI differences that were smaller than the real change. The

largest difference was for the 500 cycle TCMA non-swap simulation.

The mean fractal dimensions of urban patches were smaller for all simulations,

swap and non-swap. FRAGSTATS calculates a fractal dimension for each patch

varying between 1 (a patch with a very simple perimeter) and 2 (a patch with shapes

containing highly convoluted perimeters). These values did not differ greatly though

from the real change grids; the largest percent difference from the real change

slightly exceeded 5%.

Figure 6. Kappas for DMA and TCMA non-swap and swap (denoted with an s)
simulations for 100, 500 and 1000 cycle runs.
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4.6 Subset simulations

We saved the result file containing the suitability values for all simulations between

1000 and 1 000 000 cycles at 1000 intervals (in addition to the 100 cycle run). The

suitability values where then multiplied by 100 and their integer values saved to a

file. We then plotted (figure 8) the number of cells in of the 100 suitability values for

several of the simulations across this range of 1000 different simulations. It is

interesting to note how the neural nets first produce suitability values that are

aggregated toward 0; at 5000 cycles the mean value in suitability values approach 50

but at larger cycle simulations, greater than 100 000 cycles, the neural net begins to

produce a large distribution of suitability value with the most frequent values being

at the extremes. This suggests that the neural net at 1 000 000 cycles has more

confidence in many cells which are either 0 (no change) or 1 (change). In addition,

the middle portion of this distribution, which likely represents ambiguity in change

and no change, becomes smaller.

Figure 7. Landscape pattern metrics for TCMA and DMA non-swap and swap runs
expressed as a percentage difference from real urban change map. See table 1 for details of
landscape equations and descriptions.
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We calculated Kappas for a wide range of simulations for this subset as well

(figure 9). Kappas start at 0.3 for the 100 cycle simulation, dip to 0.23 for the 5000

cycle simulation, and then increase with increasing number of cycles until it passes

0.5 around the 60 000 cycle simulation. Kappa plateaus around 0.6 for 100 000 cycle

runs up to the 5 000 000 cycle run.

The percent difference of each landscape metric with that of the subset real change

is shown in figure 10 for the same cycle simulations as we reported for Kappas. The

percent difference from real change for NP, AREA_MEAN, AREA_SD, and

COHENSION metrics are all smallest for model simulations with 20 000 cycles or

more. The LSI showed a different trend with this metric being larger than real

change, then smaller than real change at 20 000 cycles but not differing much with

real change LSI for simulations with greater than 60 000 cycles. The percent

Figure 8. Suitability distributions for selected runs of cycles between 100 and 1 000 000.
Suitability values are neural net output values multiplied by 100 and truncated to integers.
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difference from real change mean fractal dimension did not differ greatly across all

model simulations.

5. Discussion

Neural nets are powerful tools that allow users to build complex models that have

nonlinear relationships (Bishop 1999). It is oftentimes stated (e.g. Reed and Marks

1999, Skapura 1999) that neural nets can generalize well across data sets. One

technique to ensure that neural nets can produce a generalizable model is to employ

a ‘stop early’ approach; in other words, allow the neural net to train for only few a

cycles. A recognized problem of stopping early, especially with back-propagation

networks, is that the neural net could become ‘trapped’ in a local minima solution

(Reed and Marks 1999) that will eventually produce poor results.

We parameterized the GIS and neural net-based LTM for the Detroit and Twin

Cities Metropolitan Areas. We built several neural net models and attempted to test

whether these models were transferable across the two metropolitan regions for

neural nets that are stopped early. In past model simulations (e.g. Pijanowski et al.

2002a), we ran simulations for several thousand cycles and found models

performing well around 4000 cycles.

We built two different types of models. The first, were models where we trained

and tested using data from the same area. The second, which we refer to as swap

simulations, were designed to create network files developed from a training exercise

in one area and then testing (e.g. network file from the other area) on the other input

dataset.

We used a variety of methods to assess model performance. This included: (1)

determining how well each model predicted location across spatial scales, as

reflected in our scaleable window analysis, (2) what percentage of cells in the

different model simulations were the same; (3) how well model predictions of urban

change differed from real change using the Kappa statistics, and (4) how well the

models predicted spatial patterns compared to the spatial pattern of urban change.

Figure 9. Kappa coefficients for TCMA subset simulations for selected runs of cycles
between 100 and 1 000 000.
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Because we were also interested in how well the neural nets performed for

extended training cycles, we created a subset of a model from the TCMA area that

represented 1% of the study area. We trained this area for 5 000 000 cycles saving

network files for every 1000 cycle iterations. This area also included a higher number

of urban change percentages (around 50%) so we could evaluate the model when the

neural net is presented with an equal number of change and no change cells.

For the non-swap simulations, both TCMA and DMA performed well (i.e. had

PCMs greater than 50%) at a 1 km scale. The swap simulations, however, produced

highly variable results; only one swap simulation (TCMA 1000 cycle) performed as

well as the non-swap.

The Kappas for the TCMA and DMA non-swap and swap simulations were all

very low, suggesting poorly performing models. However, according to Fielding

(2002), the Kappa coefficient is sensitive to sample size and is unreliable if one class

Figure 10. Landscape pattern metrics for the TCMA subset simulation for selected runs of
cycles between 100 and 5 000 000. The values are expressed as percentage different from real
urban change that occurred in the subset region.
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of the data dominates in the dataset under examination (Fielding 2002: 277). For

each of our metropolitan areas, urban change occurred in only 4.87% of the area in

TCMA and 6.88% in DMA. Indeed, for a more balanced model simulation where

the number of change and no change cells where nearly equal (i.e. our subset

simulation), the Kappa exceeded the often perceived threshold for model validation

of K50.4 (Boone and Krohn 2002, Fielding 2002, Sousa et al. 2002), and K50.5

(Pontius 2000, Pontius 2002).

In conclusion, we believe that neural nets show promise in producing good models

of urban change. We show that the number of training cycles produces greatly

differing results so care must be used in assuring that model performance be assessed

across a range of training cycles. Our model performance methods suggest that a

variety of techniques are useful in judging model performance. These include

accuracy across scales and metrics of spatial pattern. We believe that Kappa is a

reliable test for areas undergoing a lot of land use change. It may not, however, be

robust for models that need to predict fairly rare occurrences of change.
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